МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования Тверской области

Администрация Андреапольского муниципального округа

МОУ АСОШ №3

РАССМОТРЕНО

Руководитель ШМО

Bay

Вахрушева Ю.Г. Протокол №1 от «28» августа 2023 г. СОГЛАСОВАНО

Заместитель директора по УВР

Петрова О.Г.

Протокол №1 от «29» августа 2023 г.

УТВЕРЖДЕНО

Директор МОУ АСОШ №3

Хаббо Л.А.

Приказ №40

от «30» августа 2023 г.

Рабочая программа

элективного курса «Биохимия» для обучающихся 11 класса

Составитель: Козлова Анна Александровна, учитель химии

г.Андреаполь 2023 год

Пояснительная записка

определяется необходимостью Актуальность данного курса поддержки профильного образования, направленного на подготовку будущих профессионалов для развития высокотехнологичных производств на стыке естественных наук. Содержание конвергентно ориентированным и обеспечивает является формирование компетенций, необходимых для жизни и трудовой деятельности в эпоху высокоразвитой науки и современных технологий. Курс предназначен учащимся старшей школы естественно-научного, технологического или универсального профилей обучения и может быть как обязательным учебным предметом по выбору учащегося из компонента образовательной организации в вариативной части учебного плана, так и курсом в рамках внеурочной деятельности и/или дополнительного образования. Рабочая программа устанавливает обязательное предметное содержание, предлагает примерное тематическое планирование с учётом логики учебного процесса, определяет планируемые результаты освоения курса на уровне среднего общего образования.

В соответствии с системно-деятельностным подходом реализация данной программы предполагает использование современных методов обучения и разнообразных форм организации образовательного процесса: круглый стол, видеолекторий, биоинформатическая работа, семинары, практические и лабораторные работы, учебное исследование, самостоятельная работа с первоисточниками, лекция, конференция и др.; возможно выполнение индивидуальных исследований и проектов. Достижение планируемых результатов оценивается как «зачтено/не зачтено».

Цели курса: формирование научной картины мира; развитие познавательных интересов и метапредметных компетенций обучающихся через практическую деятельность; расширение, углубление и обобщение знаний о строении, свойствах и функциях биомолекул; формирование устойчивого интереса к профессиональной деятельности в области естественных наук.

Задачи курса: — изучить особенности строения, свойства и функции биомолекул (углеводов, липидов, белков, нуклеиновых кислот), входящих в состав живого организма; — сформировать у обучающихся представления об основных методах исследования в биохимии; — познакомить обучающихся с биоинформатикой; — обеспечить развитие экспериментальных умений и навыков в соответствии с требованиями правил техники безопасности; — рассмотреть области применения современной биохимии в фундаментальных, медицинских и фармацевтических исследованиях; — сформировать у обучающихся компетенции для профессионального самоопределения в рамках предметов естественно-научного цикла, развивать мотивацию к непрерывному образованию как условию успешной профессиональной деятельности; — раскрыть роль биохимии как базового и приоритетного направления научно-технического прогресса.

Общая характеристика курса.

Данный курс содержательно связан с курсами химии, биологии, информатики, т. е. носит интегрированный характер и способствует развитию естественно-научного мировоззрения учащихся. В учебном плане элективный курс «Биохимия» является частью предметной области «Естественно-научные предметы.

Основные идеи курса: — единство материального мира; — внутри- и межпредметная интеграция; — взаимосвязь науки и практики; — взаимосвязь человека и окружающей среды.

Ключевые принципы организации занятий: — междисциплинарный синтез естественнонаучного знания; — ориентация учебной деятельности на исследовательскую и конструктивную; — развитие коммуникативных навыков; — обучение различным видам деятельности; — пополнение надпредметных знаний через НБИК-технологии (нано-, биотехнологии, информационные, когнитивные технологии); — ведущая роль самоорганизации в процессе обучения.

Формами контроля над усвоением материала могут служить отчёты по практическим работам, самостоятельные творческие работы, тесты, итоговые учебно-исследовательские проекты. Итоговое занятие проходит в виде научно-практической конференции или круглого стола, где заслушиваются доклады учащихся по выбранной теме исследования, которые могут быть представлены в форме реферата или отчёта по исследовательской работе.

Содержание курса

Раздел 1. Введение в биохимию (6 ч)

Техника безопасности при работе в химической лаборатории. История биохимии. Предмет биохимии. Структура и функции биомолекул.

Раздел 2. Методы выделения биомолекул (6ч)

Знакомство с методами: «Получение ДНК из клеток лука», «Получение препарата нуклеиновых кислот из дрожжей и исследование нуклеопротеинов», «Экстракция липидной фракции из желтка куриного яйца».

Раздел 3. Методы разделения биомолекул (4 ч)

Теоретические основы биохимических методов разделения биомолекул. Практические работы: 1. «Гель-фильтрационное разделение биомолекул». 2. «Тонкослойная хроматография липидов». 3. «Идентификация функциональных групп различными агентами».

Раздел 4. Качественный и количественный анализ биомолекул (10ч)

Практические работы аналитического характера: 1. «Количественный анализ фосфатидилхолина. Определение липидного фосфора с помощью ферротиоцианата аммония (метод Стюарта)». 2. «Качественные реакции на наличие пуриновых оснований и остатков фосфорной кислоты в составе ДНК». 3. «Определение пентоз в составе нуклеиновых кислот», «Качественный и количественный анализ наличия белков и аминокислот».

Раздел 5. Компьютерное моделирование и визуализация структуры биомолекул (7 ч)

Возможности программы PyMol для визуализации пространственной структуры биомолекул, компьютерное моделирование пространственной структуры белков с помощью программы Modeller.

Раздел 6. Итоговое занятие (1ч)

Знакомство с «Атласом новых профессий», перспективы изучения науки биохимии и профессионального самоопределения (в формате круглого стола или урока-дискуссии).

Тематическое планирование

Курс рассчитан на 34 ч (1 ч в неделю).

№ занятия	Тема	Количество	Дата
		часов	
Раздел 1. Введение в биохимию			
1-2	Предмет биохимии. История биохимии	2	
3-4	Структура и функции биомолекул	2	
5	Эксперимент: планирование, выполнение и	1	
	представление результатов		
6	Правила техники безопасности	1	
Раздел 2. Методы выделения биомолекул			
7-8	Получение ДНК из клеток лука	2	
9-10	Выделение нуклеиновых кислот из дрожжей и	2	
	исследование нуклеопротеинов		
11-12	Экстракция липидной фракции из желтка	2	
	куриного яйца		
Раздел 3. Методы разделения биомолекул			
13-14	Разделение биомолекул методом гель-	2	
	фильтрации		
15-16	Идентификация функциональных групп	2	
Раздел 4. Качественный и количественный анализ биомолекул			
17-18	Определение концентрации	2	
	фосфатидилхолина. Метод Стюарта		
19-20	Качественные реакции на пуриновые	2	
	основания и остатки фосфорной кислоты в		
	днк		
21-22	Определение пентоз в составе нуклеиновых	2	
	кислот		
23-26	Качественный и количественный анализ белков	4	
Раздел 5. Компьютерное моделирование и визуализация структуры биомолекул			
27-30	РуМо1 — программа для визуализации	4	-
	пространственной структуры биомолекул		
31-33	Modeller — программа для компьютерного	3	
	моделирования пространственной структуры		
	белков		
Раздел 6. Итоговое занятие			
34	Профессия биохимик. Работа с альманахом	1	
	«Атлас новых профессий».		
[1	<u> </u>	I

Планируемые результаты освоения курса

В результате изучения элективного курса на уровне среднего общего образования у учащихся будут сформированы следующие предметные результаты.

Учащийся научится:

- раскрывать на примерах роль биохимии в формировании современной научной картины мира и в практической деятельности человека;
- демонстрировать на примерах взаимосвязь между биохимией и другими естественными науками;
- составлять молекулярные и структурные формулы органических веществ как носителей информации о строении вещества, его свойствах и принадлежности к определённому классу соединений;
- характеризовать органические вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками веществ;
 обосновывать практическое использование органических веществ и их реакций в промышленности и быту;
- использовать знания о составе, строении и химических свойствах белков, липидов, углеводов и нуклеиновых кислот для применения в научной и практической деятельности; использовать на практике различные методы биохимии экстракцию нуклеиновых кислот из биологических объектов, спектрофотометрию в УФ-видимой области, тонкослойную хроматографию;
- выполнять химический эксперимент в соответствии с правилами и приёмами безопасной работы с химическими веществами и лабораторным оборудованием:
- по получению образца нуклеиновых кислот клеток лука, нуклеопротеина дрожжей, липидной фракции желтка куриного яйца;
- по разделению биомолекул;
- по проведению качественных реакций на наличие в нуклеиновых кислотах остатков пуриновых оснований, рибозы/дезоксирибозы, фосфорной кислоты;
- по проведению количественного анализа фосфатидилхолина;
- по проведению качественных и количественных реакций на белки и аминокислоты;

лабораторным оборудованием; — владеть правилами безопасного обращения с едкими, горючими и токсичными веществами, средствами бытовой химии; — осуществлять поиск химической информации по названиям, идентификаторам, структурным формулам веществ; — владеть методами компьютерной визуализации биомолекул с использованием программы PyMol; — строить модели белков с помощью метода гомологичного моделирования; — критически оценивать и интерпретировать с точки зрения естественно-научной корректности химическую информацию, содержащуюся в сообщениях средств массовой информации, ресурсах Интернета, научно-популярных статьях, в целях выявления ошибочных суждений и формирования собственной позиции; — представлять пути решения глобальных проблем, стоящих перед человечеством, и перспективных направлений развития химических технологий. Учащийся получит возможность научиться: — иллюстрировать на примерах становление и эволюцию биохимии как науки на различных исторических этапах её развития; — использовать методы научного познания при решении учебно-исследовательских задач по изучению свойств, способов получения и распознавания органических веществ; — устанавливать взаимосвязи между фактами и теорией, причиной и следствием при анализе проблемных ситуаций и обосновании принимаемых решений на основе химических знаний; — формулировать цель исследования, выдвигать и проверять экспериментально гипотезы о химических свойствах веществ на основе их состава и строения, их способности вступать в химические реакции, о характере и продуктах различных химических реакций; — самостоятельно планировать и проводить химические эксперименты с соблюдением правил безопасной работы с веществами и лабораторным оборудованием; — интерпретировать данные о составе и строении веществ, полученные с помощью современных биохимических методов; — характеризовать роль белков и нуклеиновых кислот как важнейших биологически

активных веществ.

— владеть правилами и приёмами безопасной работы с химическими веществами и